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John Harrison, at AITP 2018, gave a programmatic talk “Let’s make set theory great
again!” [Har18] in which he proposes to take standard set theory (and classical first-order
logic) as a basis for automated theorem proving, enriched conservatively and along current
mathematical practice by a soft type system à la Freek Wiedijk [Wie07] and by syntactic
sugar. This should lead to a standard hierarchy of number systems, a principled treatment of
undefinedness, and generally to a “closer correspondence with informal texts”.

SAD. A small system which embraces the Harrison approach is the System for Automated
Deduction (SAD) by Andrei Paskevich et.al. [Pas07]. SAD combines natural language input
with first-order proof checking. Mathematical texts are expressed in the controlled mathem-
atical language ForTheL, and checked for logical correctness by a “reasoner” together with a
standard automated theorem prover like E.

Naproche-SAD. In 2017 we began our work with the SAD system, based on experiences
with our earlier Naproche system [KCKS09]. We have made the code more efficient and added
set theoretical mechanisms [FKW18]. At AITP 2018, we reported on our progress. Meanwhile
we are able to deal with chapter-sized texts at the level of first-year undergraduate mathematics.
We are working on a LATEXinterface, and, together with Makarius Wenzel, on a jedit-PIDE for
Naproche-SAD (see [Wen18]).

Naturally Enriched First-Order Logic. ForTheL signature definitions like

Signature 1. A real number is a notion. Let x, y, z denote real numbers.

Signature 2. R is the set of real numbers.

Definition 1. x is positive iff x > 0.

Signature 3. An integer is a real number. Let a, b denote integers. Let m,n denote positive integers.

serve to set up convenient first-order and set-theoretical environments. ForTheL allows many
natural language constructs of ordinary mathematics. Proof methods like case splits, contra-
diction and induction are supported by automatically generating and checking their implicit
proof obligations. The example also indicates that hierarchical number systems can easily be
set up in ForTheL.

Soft Typing and Undefinedness. SAD allows soft dependent types via notions and ad-
jectives, as in the above example. As in [Wie07], types are internally translated into obvious
first-order predicates. Type checking is turned into an ontological check at “runtime” during
proving to ensure that all presuppositions are fulfilled. Usually these obligations are consider-
ably simpler than the main proof task. This approach also encompasses a correct treatment of
undefinedness: the ontological check of the notorious fraction 1

x and hence the checking of the
entire text fails if the system cannot prove x 6= 0 in the proof context of the term.

Set Theory. The well-known difficulties of set theory in automated theorem proving stem
from its vast infinite axiom system and the deep iterations of the ∈-relation in set-theoretically
defined notions like numbers. It is essential to keep the proof search away from arbitrary
axioms and expansions of notions. In Naproche-SAD, instances of the problematic infinite



axiom schemes have to be explicitly invoked, e.g., by the use of abstraction terms or function
definitions. The reasoner of Naproche-SAD has a restrained strategy for definition expansions
which benefits set theory in particular.

Correspondence with Informal Texts. Several of our point are exemplified in the
following fragment of our formalization of Rudin’s [Rud76] which we compare to the original
statement of Theorem 120 a) in [Rud76]. One could obtain even stronger natural language
resemblances by adding more argumentative phrases to ForTheL.

Theorem [Naproche-SAD] If x ∈ R and y ∈ R and
x > 0 then there is a positive integer n such that

n · x > y.

Proof. Define A = {n · x | n is a positive integer}. As-
sume the contrary. Then y is an upper bound of A.
Take a least upper bound α of A. α−x < α and α−x
is not an upper bound of A. Take an element z of A
such that not z ≤ α − x. Take a positive integer m
such that z = m · x. Then α− x < m · x (by 15b).

α = (α− x) + x < (m · x) + x = (m+ 1) · x.

(m + 1) · x is an element of A. Contradiction. Indeed
α is an upper bound of A.

Theorem [Rudin’s original text] (a) If x ∈ R, y ∈ R,
and x > 0, then there is a positive integer n such that

nx > y.

Proof. Let A be the set of all nx, where n runs through
the positive integers. If (a) were false, then y would
be an upper bound of A. But then A has a least
upper bound in R. Put α = supA. Since x > 0,
α − x < α, and α − x is not an upper bound of A.
Hence α − x < mx for some positive integer m. But
then α < (m+ 1)x ∈ A, which is impossible, since α is
an upper bound of A.

Comparisons with Mizar. Whilst a majority of proof assistants employ some strong type
theory for fundamental reasons or to narrow down proof search, systems like Isabelle/ZF [Isa],
Metamath [Met] or Mizar [Miz] are based on first-order set theory. As we share the aim
of modeling ordinary mathematical practice with Mizar in particular, there are similarities
concerning language and text structuring. Mizar is commited to Tarski-Grothendieck set theory,
whereas in Naproche-SAD the specific foundations are variable and depend on which abstraction
terms are declared to be sets. Mizar and Naproche-SAD reflect the general mathematical
practice of soft typing by ”types” and ”notions”, respectively, which are interpreted as set-
theoretic predicates. Both systems have mechanisms to deal with proof obligations spawned
by soft-typing. The type systems are however different, as Mizar, e.g., requires types to be
non-empty.

A decisive difference between Mizar and Naproche-SAD lies in the degree of proof auto-
mation. Mizar texts are required to specify detailed proof steps which leads to a legible, yet
computer orientated input language. Naproche-SAD uses strong automated theorem proving
to find implicit proof steps. This allows proof granularities similar to textbook proofs, and
supports the use of a (restricted) natural language as proof language. The prospect of formal
mathematical texts written in natural language is a main driving force of the Naproche-SAD
project.

Kelley Morse Class Theory. If one allows class quantifiers in the defining properties ϕ of
abstraction terms {x | ϕ} one is working in Kelley Morse class theory (KM) which is somewhat
stronger than Zermelo-Fraenkel set theory. In KM, sets are those classes which are elements of
some class. The abstraction term mechanism of Naproche-SAD corresponds to Kelley Morse
terms. This has motivated our current formalization of the Appendix of [Kel55] in which the
theory KM was introduced. Working with the Appendix has shown the necessity of splitting
larger texts into chapters and using ideas of small theories and theory morphisms [Koh14] to
control ontological manueuvers like turning the formation of Kuratowski ordered pairs into a
basic function.
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In our Talk we shall illustrate the above set theory orientated principles by excerpts and
demonstrations of the mentioned formalisations.
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